Abstract
Satellite aerosol products are pivotal in studies of regional air quality and global climate change. Compared with accurate in situ observations, satellite measurements provide valuable large-scale atmospheric information. However, limitations such as clouds and retrieval assumptions result in a significant number of missing values in satellite aerosol optical depth (AOD) products, which severely hampers the representativeness. To address this issue, spatial interpolation of the AOD data is necessary to improve data coverage. In this study, one year of AOD observation data from the MODIS C6.1 version was applied to analyze the spatiotemporal correlated characteristics. The statistical parameters were used as dynamic interpolation weights to develop a novel interpolation method called empirical correlation weighting (ECW) based on MODIS AOD over Northern China in 2016. The ECW interpolation results were obtained at a 0.05° resolution (~5 km). The results showed that the spatial coverage of the Deep Blue (DB) and Dark Target (DT) products increased from 43.88% to 70.65% and from 15.04% to 32.62%, respectively. The reconstruction of the ECW method illustrated good agreement with original values in three cases and in two experimental areas. The mean absolute error (MAE) and root mean square error (RMSE) in the two experiments were 0.1171 and 0.0809, and 0.1212 and 0.0838, respectively, indicating that the ECW exhibited the better accuracy than ordinary Kriging (OK) and Thin Plate Spline (TPS). The AERONET validation results indicated that the values of RMSE and MAE were slightly higher after interpolation compared with those before interpolation, maintaining relatively low values, 0.241 and 0.257, 0.140 and 0.150, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.