The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is commonly prescribed to treat major depressive disorder and is found at high concentrations in the aquatic environment. Concerns have been raised related to the health of aquatic organisms in response to this nontargeted pharmaceutical exposure. For instance, we previously demonstrated that exposure to venlafaxine perturbs neurodevelopment, leading to behavioural alterations in zebrafish (Danio rerio). We also observed disruption in serotonin expression in the pineal and raphe, regions critical in regulating circadian rhythms, leading us to hypothesize that zygotic exposure to venlafaxine disrupts the circadian locomotor rhythm in larval zebrafish. To test this, we microinjected zebrafish embryos with venlafaxine (1 or 10 ng) and recorded the locomotor activity in 5-day-old larvae over a 24-h period. Venlafaxine deposition reduced larval locomotor activity during the light phase, but not during the dark phase of the diurnal cycle. The melatonin levels were higher in the dark compared to during the light photoperiod and this was not affected by embryonic venlafaxine deposition. Venlafaxine exposure also did not affect the transcript abundance of clock genes, including clock1a, bmal2, cry1aand per2, which showed a clear day/night rhythmicity. A notable finding was that exposure to luzindole, a melatonin receptor antagonist, decreased the locomotor activity in the control group in light, whereas the activity was higher in larvae raised from the venlafaxine-deposited embryos. Overall, zygotic exposure to venlafaxine disrupts the locomotor activity of larval zebrafish fish during the day, demonstrating the capacity of antidepressants to disrupt the circadian rhythms in behaviour. Our results suggest that disruption in melatonin signalling may be playing a role in the venlafaxine impact on circadian behaviour, but further investigation is required to elucidate the possible mechanisms in larval zebrafish.