X-ray absorption fine structure (XAFS) spectroscopy, temperature-programmed reduction (TPR), and temperature-programmed hydride decomposition (TPHD) were employed to elucidate the structures of a series of PdRe/Al2O3 bimetallic catalysts for the selective hydrogenation of furfural. TPR evidenced low-temperature Re reduction in the bimetallic catalysts consistent of the migration of [ReO4]− (perrhenate) species to hydrogen-covered Pd nanoparticles on highly hydroxylated γ-Al2O3. TPHD revealed a strong suppression of β-PdHx formation in the reduced catalysts prepared by (i) co-impregnation and (ii) [HReO4] impregnation of the reduced Pd/Al2O3, indicating the formation of Pd-rich alloy nanoparticles; however, reduced catalysts prepared by (iii) [Pd(NH3)4]2+ impregnation of calcined Re/Al2O3 and subsequent re-calcination did not. Re LIII X-ray absorption edge shifts were used to determine the average Re oxidation states after reduction at 400 °C. XAFS spectroscopy and high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM) revealed that a reduced 5 wt.% Re/Al2O3 catalyst contained small Re clusters and nanoparticles comprising Re atoms in low positive oxidation states (~1.5+) and incompletely reduced Re species (primarily Re4+). XAFS spectroscopy of the bimetallic catalysts evidenced Pd-Re bonding consistent with Pd-rich alloy formation. The Pd and Re total first-shell coordination numbers suggest that either Re is segregated to the surface (and Pd to the core) of alloy nanoparticles and/or segregated Pd nanoparticles are larger than Re nanoparticles (or clusters). The Cowley short-range order parameters are strongly positive indicating a high degree of heterogeneity (clustering or segregation of metal atoms) in these bimetallic catalysts. Catalysts prepared using the Pd(NH3)4[ReO4]2 double complex salt (DCS) exhibit greater Pd-Re intermixing but remain heterogeneous on the atomic scale.
Read full abstract