Abstract
The pentavalent oxyanions antimonate (Sb(V)) and arsenate (As(V)) are toxic metalloids in environmental systems. In this study, we compare their sorption and surface speciation on 2-line ferrihydrite (Fh), δ-MnO2 and Na-montmorillonite (Mont) at pH5.5. The Sb(V) and As(V) sorption affinity and the highest measured surface excess (mmol:g) show that mineral reactivity towards Sb(V) or As(V) sorption increases in the order of Mont<δ-MnO2<Fh. In addition, Sb(V) showed greater uptake relative to As(V) by both Fh and δ-MnO2. Using differential pair distribution function (d-PDF) analysis of high-energy X-ray scattering data, we found that the larger SbO6 octahedron (RSb–O=1.95Å) can bind in both single edge-(1E) and double corner-sharing (2C) geometries to Fh and δ-MnO2, whereas the smaller AsO4 tetrahedron (RAs–O=1.69Å) binds only in the 2C geometry. Thus, a greater number of surface sites support Sb(V) adsorption relative to As(V) adsorption on Fh and δ-MnO2. Conversely, Mont supports only 2C adsorption geometries, which is consistent with the similar uptake behaviors of Sb(V) and As(V) on this mineral. Finally, we indexed atomic pairs from adsorbed Sb(V) and As(V) at R>6Å in the d-PDFs. The analysis of the intermediate-ranged surface structure of our samples substantiated our interpretations of oxyanion adsorption geometries and provided information regarding changes in the underlying mineral surface upon ion adsorption. Our results show that the differences between Sb(V) and As(V) interactions with reactive soil minerals, including their sorption geometries, are linked to their distinct first-shell coordination environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.