Abstract

The characterization of solvation shells of atoms, ions, and molecules in solution is essential to relate solvation properties to chemical phenomena such as complex formation and reactivity. Different definitions of the first-shell coordination sphere from simulation data can lead to potentially conflicting data on the structural properties and associated ligand exchange dynamics. The definition of a solvation shell is typically based on a given threshold distance determined from the respective solute-solvent pair distribution function g(r) (i.e., GC). Alternatively, a nearest neighbor (NN) assignment based on geometric properties of the coordination complex without the need for a predetermined cutoff criterion, such as the relative angular distance (RAD) or the modified Voronoi (MV) tessellation, can be applied. In this study, the effect of different NN algorithms on the coordination number and ligand exchange dynamics evaluated for a series of monatomic ions in aqueous solution, carbon dioxide in aqueous and dichloromethane solutions, and pure liquid water has been investigated. In the case of the monatomic ions, the RAD approach is superior in achieving a well separated definition of the first solvation layer. In contrast, the MV algorithm provides a better separation of the NNs from a molecular point of view, leading to better results in the case of solvated CO2. When analyzing the coordination environment in pure water, the cutoff-based GC framework was found to be the most reliable approach. By comparison of the number of ligand exchange reactions and the associated mean ligand residence times (MRTs) with the properties of the coordination number autocorrelation functions, it is shown that although the average coordination numbers are sensitive to the different definitions of the first solvation shell, highly consistent estimates for the associated MRT of the solvated system are obtained in the majority of cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call