This paper proposes a self-splitting fuzzy classifier with support vector learning in expanded high-order consequent space (SFC-SVHC) for classification accuracy improvement. The SFC-SVHC expands the rule-mapped consequent space of a first-order Takagi-Sugeno (TS)-type fuzzy system by including high-order terms to enhance the rule discrimination capability. A novel structure and parameter learning approach is proposed to construct the SFC-SVHC. For structure learning, a variance-based self-splitting clustering (VSSC) algorithm is used to determine distributions of the fuzzy sets in the input space. There are no rules in the SFC-SVHC initially. The VSSC algorithm generates a new cluster by splitting an existing cluster into two according to a predefined cluster-variance criterion. The SFC-SVHC uses trigonometric functions to expand the rule-mapped first-order consequent space to a higher-dimensional space. For parameter optimization in the expanded rule-mapped consequent space, a support vector machine is employed to endow the SFC-SVHC with high generalization ability. Experimental results on several classification benchmark problems show that the SFC-SVHC achieves good classification results with a small number of rules. Comparisons with different classifiers demonstrate the superiority of the SFC-SVHC in classification accuracy.
Read full abstract