Abstract

In this paper, we consider a Riesz fractional advection-dispersion equation (RFADE), which is derived from the kinetics of chaotic dynamics. The RFADE is obtained from the standard advection-dispersion equation by replacing the first-order and second-order space derivatives by the Riesz fractional derivatives of order a e (0, 1) and fi e (1, 2], respectively. We derive the fundamental solution for the Riesz fractional advection-dispersion equation with an initial condition (RFADE-IC). We investigate a discrete random walk model based on an explicit finite-difference approximation for the RFADE-IC and prove that the random walk model belongs to the domain of attraction of the corresponding stable distribution. We also present explicit and implicit difference approximations for the Riesz fractional advection-dispersion equation with initial and boundary conditions (RFADE-IBC) in a finite domain. Stability and convergence of these numerical methods for the RFADE-IBC are discussed. Some numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.