In conventional wind farm design and optimization, analytical wake models are generally used to estimate the wake-induced power losses. Different wake models often yield significantly dissimilar estimates of wake velocity deficit and wake width. In this context, the wake behavior, as well as the subsequent wind farm power generation, can be expressed as functions of a series of key factors. A quantitative understanding of the relative impact of each of these key factors, particularly under the application of different wake models, is paramount to reliable quantification of wind farm power generation. Such an understanding is however not readily evident in the current state of the art in wind farm design. To fill this important gap, this paper develops a comprehensive sensitivity analysis (SA) of wind farm performance with respect to the key natural and design factors. Specifically, the sensitivities of the estimated wind farm power generation and maximum farm output potential are investigated with respect to the following key factors: (i) incoming wind speed, (ii) ambient turbulence, (iii) land area per MW installed, (iv) land aspect ratio, and (v) nameplate capacity. The extended Fourier amplitude sensitivity test (e-FAST), which helpfully provides a measure of both first-order and total-order sensitivity indices, is used for this purpose. The impact of using four different analytical wake models (i.e., Jensen, Frandsen, Larsen, and Ishihara models) on the wind farm SA is also explored. By applying this new SA framework, it was observed that, when the incoming wind speed is below the turbine rated speed, the impact of incoming wind speed on the wind farm power generation is dominant, irrespective of the choice of wake models. Interestingly, for array-like wind farms, the relative importance of each input parameter was found to vary significantly with the choice of wake models, i.e., appreciable differences in the sensitivity indices (of up to 70%) were observed across the different wake models. In contrast, for optimized wind farm layouts, the choice of wake models was observed to have marginal impact on the sensitivity indices.