Abstract

Uncertainty and sensitivity analysis is an essential ingredient of model development and applications. For many uncertainty and sensitivity analysis techniques, sensitivity indices are calculated based on a relatively large sample to measure the importance of parameters in their contributions to uncertainties in model outputs. To statistically compare their importance, it is necessary that uncertainty and sensitivity analysis techniques provide standard errors of estimated sensitivity indices. In this paper, a delta method is used to analytically approximate standard errors of estimated sensitivity indices for a popular sensitivity analysis method, the Fourier amplitude sensitivity test (FAST). Standard errors estimated based on the delta method were compared with those estimated based on 20 sample replicates. We found that the delta method can provide a good approximation for the standard errors of both first-order and higher-order sensitivity indices. Finally, based on the standard error approximation, we also proposed a method to determine a minimum sample size to achieve the desired estimation precision for a specified sensitivity index. The standard error estimation method presented in this paper can make the FAST analysis computationally much more efficient for complex models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.