A demonstration of cell-specific patterns of development in the immature CNS is provided by examples of characteristic, cell-specific time-courses of enzyme development in different classes of brain cells isolated in highly purified form by bulk-separation from the cerebral and cerebellar cortex of the growing rat. The enzymatic analysis was carried out at the level of the nerve and glial cell lysosomes and mitochondria, two subcellular organelles crucial to the economy of all cells. The findings reveal rather similar developmental patterns for the lysosomal hydrolase N-acetyl-beta-D-glucosaminidase in neurons and glial cells of the cerebral cortex as well as in two different cerebellar nerve cell types, the Purkinje and the granule cell. However, significant differences in the post-natal chronology of development of the mitochondrial enzyme alpha-glycerophosphate dehydrogenase were noted between cortical nerve and glial cells, the glial enzyme exhibiting 6-fold higher levels of activity than the neuronal one throughout the first month of postnatal life. The findings emphasize the feasibility as well as the necessity of studies aimed at the elucidation of the cell-specific aspects of the biochemistry of developing nerve and glial cells.