Abstract

Evoked potentials arising in the visual cortex and superior colliculus to stimulation of the collateral eye by single, paired, and repetitive flashes were recorded in rabbits reared in darkness or in normal illumination. The absence of significant change in the latent period and amplitudes of the first two components of the collicular responses and of the recovery cycle and response to repetitive stimulation in the light-deprived animals suggest that photic stimulation does not affect the normal functional development of the rabbit retinotectal system. However, functional deafferentation in the early postnatal period gives rise to serious disturbances of visual cortical function, as reflected in a marked decrease in amplitude of the primary response, lengthening of the recovery cycle, and narrowing of the range of rhythm-binding frequencies of flashes. These disturbances were reversible. The period of maximal sensitivity of the rabbit retinocortical system to visual deprivation begins at the end of the first month of postnatal life. The possible mechanisms lying at the basis of these functional disturbances in light-deprived animals are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.