First-arrival traveltime tomography was applied to high-resolution seismic data acquired over a known quick-clay landslide scar near the Gota River in southwest Sweden in order to reveal the geometry and physical properties of clay-related normally consolidated sediments. Investigated area proved to be a challenging environment for tomographic imaging because of large P-wave velocity variations, ranging from 500 to 6000 m/s, and relatively steeply-dipping bedrock. Despite these challenges, P-wave velocity models were obtained down to ca. 150 m for two key 2D seismic profiles (each about 500-m long) intersecting over the landslide scar. The models portrait the sandwich-like structure of marine clays and coarse-grained consolidated sediments, but the estimated resolution (20 m) is too small to distinguish thin layers within this structure. Modelled velocity structures match well the results of reflection seismic processing and resistivity tomography available along the same profiles.
Read full abstract