In the 1+1D ultralocal lattice Hamiltonian for staggered fermions with a finite-dimensional Hilbert space, there are two conserved, integer-valued charges that flow in the continuum limit to the vector and axial charges of a massless Dirac fermion with a perturbative anomaly. Each of the two lattice charges generates an ordinary U(1) global symmetry that acts locally on operators and can be gauged individually. Interestingly, they do not commute on a finite lattice and generate the Onsager algebra, but their commutator goes to zero in the continuum limit. The chiral anomaly is matched by this non-Abelian algebra, which is consistent with the Nielsen-Ninomiya theorem. We further prove that the presence of these two conserved lattice charges forces the low-energy phase to be gapless, reminiscent of the consequence from perturbative anomalies of continuous global symmetries in continuum field theory. Upon bosonization, these two charges lead to two exact U(1) symmetries in the XX model that flow to the momentum and winding symmetries in the free boson conformal field theory. Published by the American Physical Society 2025
Read full abstract