Abstract

We consider an open interacting particle system on a finite lattice. The particles perform asymmetric simple exclusion and are randomly created or destroyed at all sites, with rates that grow rapidly near the boundaries. We study the hydrodynamic limit for the particle density at the hyperbolic space-time scale and obtain the entropy solution to a boundary-driven quasilinear conservation law with a source term. Different from the usual boundary conditions introduced in Bardos et al (Commun Partial Differ Equ 4(9):1017–1034, https://doi.org/10.1080/03605307908820117, 1979) and Otto (C R Acad Sci Paris 322(1):729–734, 1996), discontinuity (boundary layer) does not formulate at the boundaries due to the strong relaxation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.