The traditional magnetorheological (MR) damper subject to the limited space has shortcomings such as small damping force, narrow dynamic range and low adaptability. In this study, a new MR damper with folded resistance gaps and bending magnetic circuit was proposed for improving the damping performance. The length of the resistance gap was increased by configuring the multi-stage folded annular gap structure, and the magnetic circuit was established to activate the non-flux region. The mathematical model was established for the MR damper to analyze the damper force, magnetic circuit and dynamic performance. Subsequently, the finite element analysis (FEA) methodology was utilized to investigate the changes of magnetic flux densities in the folded resistance gaps. The test rig was setup to explore and verify the dynamic performance of the proposed MR damper under different excitation conditions. The results indicate the maximum damping force is approximately 4346 N at the current of 1.5 A, frequency of 0.25 Hz and amplitude of 7.5 mm. The damping force and dynamic range of the proposed MR damper are enhanced by 55.82% and 62.21% compared to that of the traditional MR damper at the applied current of 1.5 A, respectively, thus highlighting its high vibration control ability.
Read full abstract