Abstract

Abstract This study proposes a method for integrating finite element analysis and response surface methodology to predict tearing locations in the deep drawing of a rectangular-shape AISI 304 cup. The finite element model was confirmed by a deep-drawing experiment with nitrogengas springs, and the finite element analysis results were in agreement. Moreover, the regression model was developed using response surface methodology to predict final thickness at various locations on the rectangular-shape deep-drawn cup based on 40 finite element cases containing varied blank holder forces. The maximum percentage of thinning values was obtained from the response surface methodology results. The relationships among the blank holder forces and the thinning values at different locations were then further developed. The maps of the predicted tearing locations were then obtained and directly corresponded to the number of locations the specific blank holder forces. These maps, as established, could be directly used in a closed-loop control system enabling tearing defects to be prevented or eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.