Abstract

Deep drawing is characterized by very complicated deformation affected by the process parameter values including die geometry, blank holder force, material properties, and frictional conditions. The aim of this study is to model and optimize the deep drawing process for stainless steel 304 (SUS304). To achieve the purpose, die radius, punch radius, blank holder force, and frictional conditions are designated as input parameters. Thinning, as one of the major failure modes in deep drawn parts, is considered as the process output parameter. Based on the results of finite element (FE) analysis, an artificial neural network (ANN) has been developed, as a predictor, to relate important process parameters to process output characteristics. The proposed feed forward back propagation ANN is trained and tested with pairs of input/output data obtained from FE analysis. To verify the FE model, the results obtained from the FE model were compared with those of several experimental tests. Afterward, the ANN is integrated into a simulated annealing algorithm to optimize the process parameters. Optimization results indicate that by selecting the proper process parameter settings, uniform wall thickness with minimum thinning can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.