There is a strong desire to develop advanced electronic substrates that can meet the growing demand for miniaturization, high-speed performance, and flexibility for medical devices. To accomplish this, new packaging structures need to be able to integrate more dies with greater function, higher I/O counts, smaller pitches, and high reliability, while being pushed into smaller and smaller footprints. As a result, the microelectronics industry is moving toward alternative, innovative approaches as solutions for squeezing more function into smaller packages. In the present study, we are developing flexible packages for a variety of medical applications. Here we discuss several classes of flexible materials that can be used to form high-performance flexible packaging. In addition, copper thinner than 5 μm is routinely used, with copper layers as thin as 0.2 μm used as a seed layer for semi-additive approaches. The use of semi-additive circuitization facilitates manufacture of fine-line circuit features, and traces narrower than 12μm have been produced routinely. A smooth copper-polymer interface is ideal for high speed applications and for fine line etching. Selection of an appropriate material provides good copper adhesion to the base film. Flexible materials with 1 or 2 metal layers provide the smallest possible roll diameter for systems such as catheters. Compatibility with well developed, high performance electronic materials represents a key advantage of flexible electronics systems that are enabled by high density fine line structures rather than unusual materials. Electrical interconnection between the chip and package can be made by a number of means. Solder-coated Cu-micro pillars for a variety of finer pitch applications are being developed. Cu micro pillars are grown through the dielectric or silicon and subsequently coated with solder to produce finer pitch 3D-interconnects. The paper also describes a novel approach for the fabrication of flexible electronics on PDMS substrates. The paper discusses the fabrication of PDMS substrates using different circuit patterns and geometries. Rozalia/Ron ok move from 2.5/3D to FC/WLP 12-21-11.