In order to enhance the matting performance in multi-person dynamic scenarios, we introduce a robust, real-time, high-resolution, and controllable human video matting method that achieves state of the art on all metrics. Unlike most existing methods that perform video matting frame by frame as independent images, we design a unified architecture using a controllable generation model to solve the problem of the lack of overall semantic information in multi-person video. Our method, called ControlMatting, uses an independent recurrent architecture to exploit temporal information in videos and achieves significant improvements in temporal coherence and detailed matting quality. ControlMatting adopts a mixed training strategy comprised of matting and a semantic segmentation dataset, which effectively improves the semantic understanding ability of the model. Furthermore, we propose a novel deep learning-based image filter algorithm that enforces our detailed augmentation ability on both matting and segmentation objectives. Our experiments have proved that prior information about the human body from the image itself can effectively combat the defect masking problem caused by complex dynamic scenarios with multiple people.
Read full abstract