Abstract

A denoising method applied to atmospheric coherent length lidar is proposed. Wavelet decomposition (WD) and the adaptive median filter (ADMF) are combined in this method. In this research, the effectiveness of the WD-ADMF has been verified through simulation and measurement. The results show that this filter algorithm, when applied to lidar data, improves the average peak signal-to-noise ratio (PSNR) and centroid error while maintaining data integrity such that the measurement of coherence length or the inference of C n 2 from coherence length more closely matches simulated truth and measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.