It is commonly accepted that green filamentous anoxygenic phototrophic (FAP) bacteria are the most ancient representatives of phototrophic micro-organisms. Modern FAPs belonging to the order Chloroflexales are divided into two suborders: Chloroflexineae and Roseiflexineae. Representatives of Roseiflexineae lack chlorosomes and synthesize bacteriochlorophyll a, whereas those of Chloroflexineae synthesize bacteriochlorophylls a and c and utilize chlorosomes for light harvesting. Though they constitute a small number of species, FAPs are quite diverse in their physiology. This bacterial group includes autotrophs and heterotrophs, thermophiles and mesophiles, aerobes and anaerobes, occupying both freshwater and halophilic environments. The anaerobic mesophilic autotroph Oscillochloris trichoides DG-6 is still not well studied in its physiology, and its evolutionary origin remains unclear. The goals of this study included identification of the reaction centre type of O. trichoides DG-6, reconstruction of its bacteriochlorophyll biosynthesis pathways, and determination of its evolutionary relationships with other FAPs. By enzymic and genomic analysis, the presence of RCII in O. trichoides DG-6 was demonstrated and the complete gene set involved in biosynthesis of bacteriochlorophylls a and c was established. We found that the bacteriochlorophyll gene sets differed between aerobic and anaerobic FAPs. The aerobic FAP genomes code oxygen-dependent AcsF cyclases, but lack the bchQ/bchR genes, which have been associated with adaptation to low light conditions in the anaerobic FAPs. A scenario of evolution of FAPs belonging to the order Chloroflexales is proposed.
Read full abstract