Abstract

BackgroundChloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.MethodsThe complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria.ResultsAbundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed.ConclusionsThe genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.

Highlights

  • Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions

  • While Cfl. aurantiacus primarily consumes organic carbon sources that are released by the associated cyanobacteria in the Chloroflexus/cyanobacterial mats of its natural habitat, it can assimilate CO2 with the 3-hydroxypropionate (3HOP) autotrophic carbon fixation cycle [4,5]

  • The complete genome has been deposited in GenBank with accession number CP000909 (RefSeq entry NC_010175)

Read more

Summary

Introduction

Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. The thermophilic bacterium Chloroflexus aurantiacus was the first filamentous anoxygenic phototrophic (FAP) bacterium ( known as the green non-sulfur bacterium or green gliding bacterium) to be discovered [1]. Cfl. aurantiacus can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. While Cfl. aurantiacus primarily consumes organic carbon sources (i.e. acetate, lactate, propionate, and butyrate) that are released by the associated cyanobacteria in the Chloroflexus/cyanobacterial mats of its natural habitat, it can assimilate CO2 with the 3-hydroxypropionate (3HOP) autotrophic carbon fixation cycle [4,5]. Studies have reported carbon, nitrogen and sulfur metabolisms of Cfl. aurantiacus [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call