Chitosan (CS)/metal oxide (MO) nano-carriers have recently attracted attention due to their great integration into several biomedical applications. Herein, CS and dysprosium oxide based bio-nanocomposites (Dy2O3/CuFe3O4/CS) were prepared using a citrate sol-gel route for biomedical settings at large and drug delivery, in particular. The chemical structure, average crystallite size, and surface morphology of Dy2O3/CuFe3O4/CS bio-nanocomposites were characterized using spectroscopic techniques, including FT-IR, PXRD, and SEM. The prepared nano composite's drug loading or release kinetics were investigated by FT-IR, zeta potential (ZP), and ultraviolet-visible spectroscopy (UV–Vis). In the FT-IR spectrum, the peaks in the range of 800–400 cm−1 confirmed the formation of meta-oxides, while amide bands at 1661 and 1638 cm−1 revealed the existence of CS in the bio-nanocomposite. The peaks at 2θ = 35.46 and 28.5, 39.4 indicated the presence and chemical interaction of Dy2O3 and CuFe3O4, respectively. The crystallite size was <20 nm. The model drug used in the loading and in vitro release assays was ciprofloxacin hydrochloride. Ciprofloxacin's CF stretch caused a modest peak to be seen at 1082 cm−1 and changed in zeta potential value from 7.90 mV to 8.88 mV endorsing that the drug had been loaded onto the nanomaterial. The loading efficiency (%) of CIP onto the composite was from 25 to 30 %, calculated from optical density measurements. Different kinetic models, such as zero-order, first-order, Higuchi, Hixon-Crowell, and Korsmeyer-Peppas, were determined to confirm the drug release mechanism. The percent (%) of drug release from the surface of Dy2O3/CuFe3O4/CS in PBS (pH 7.4), acidic (pH 2.2) and basic (pH 9.4) dissolution media were found to be 70, 28 and 20 %, respectively. Drug kinetics showed that mainly the release is fickian type followed “Fick's law of diffusion”, slightly deviated from fickian release (dissolution-dependent system). Korsmeyer-Peppas (R2 0.9773, n < 0.4) and Higuchi's (R2 0.9846) models were the best for fitting controlled drug release data. The results revealed that the Dy2O3/CuFe3O4/CS bio-nanocomposite has good potential for a controlled drug delivery system.
Read full abstract