Abstract

This research aimed to extract oleosome from the Bene kernel as a carrier of beta-carotene (3, 5, and 10 % w/w) and then use oleosomes in the Quince seed gum (QSG) electrosprayed nanoparticles for the sustained release of beta-carotene in food simulant. Oleosomes loaded with 5 % w/w beta-carotene had the highest encapsulation efficiency (94.53 % ± 1.23 %) and were used at 1, 3, and 5 % w/w in the QSG electrosprayed nanoparticles. Electrospray feed solutions containing 5 % oleosomes loaded with beta-carotene had the highest zeta potential (−34.45 ± 0.58 mV) and the lowest surface tension (23.47 ± 1.10 mN/m). FESEM images showed that with the increase of oleosomes up to 3 % w/w, the average size of the electrosprayed particles decreases. The Fourier transform infrared (FTIR) test proved the presence of protein in the oleosomes and their successful extraction from Bene seeds. Differential scanning calorimetry (DSC) and FTIR proved the successful entrapment of beta-carotene in the oleosomes structure and the successful placement of oleosomes containing beta-carotene in the electrosprayed nanoparticles. The predominant driving force involving the release of beta-carotene from the designed structures in food simulants was the Fickian release mechanism. The Peleg model was introduced as the best model describing the beta-carotene release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call