Limitless implementations of nanofibrous membrane show the importance of understanding the nanomechanical responses for water purification and piezoelectric nanogenerator applications. Here, the polyvinylidene fluoride (PVDF) electrospun nanofibrous films doped by 0.01, 0.05 and 0.1 wt% of ZnO nanoparticles were prepared in the method of electrospinning. Characterizations of PVDF nanocomposite fibrous films were inspected using field emission scanning electron microscope, thermogravimetric analysis, water contact angle, uniaxial tensile test and nanoindentation technique. The influence of minimal concentration of piezoelectric nanoparticles on the morphological, water contact angle, dynamic water contact angle, piezoelectric, thermal and mechanical stabilities of nanocomposite fibrous films was examined. The nanoscale mechanical properties of the PVDF/ZnO nanofibrous films were performed by nanoindentation technique at different spots of nanofibrous mat to examine the elastic–plastic behavior of membranes. The eventual ZnO nanoparticle-modified nanofibrous membranes have been shown nano-level fibers, considerable hydrophilicity and preferable thermal, mechanical and piezoelectric properties. The doping of polymer by 0.1 wt% of ZnO nanoparticles exposed significant enhancement of thermal, mechanical and nanomechanical responses of the melting temperature 2% (170– $$173\,^{\circ }\hbox {C}$$ ), tensile strength 20% (2.418 MPa), elastic modulus 18% (2.418 GPa) and hardness 60% (235 MPa) and piezoelectric coefficient 13.42 pC/N of the nanofibrous films. These understandings of nanoscale properties are highly promising in the development of sensor and actuators, biomedical, energy harvesting and water filtration devices.