This study aimed to investigate the molecular mechanism by which microRNA (miR)-96 regulates the progression of intervertebral disc degeneration (IDD). The expression of miR-96 in normal intervertebral discs and in IDD was detected by performing reverse transcription-quantitative PCR. CCK8 assay was applied to examine the proliferation of nucleus pulpous (NP) cells and flow cytometry was used to evaluate the cell apoptosis and cell cycle profile. In addition, the immunofluorescence analysis was employed to detect cell proliferation. The expressions of proteins were assessed by western blot analysis. TargetScan and miRDB were used to predict the target genes of miR-96. The results indicated that miR-96 expression was upregulated in IDD compared with normal intervertebral discs. Overexpression of miR-96 could significantly inhibit the proliferation of NP cells via inducing apoptosis and G1 arrest. In addition, fibroblast growth factor receptor substrate 2 (FRS2) was identified as the target of miR-96 and overexpression of FRS2 could revere the effect of miR-96 mimics in NP cells. Therefore, these findings demonstrated that miR-96 plays a critical role during the progression of IDD and miR-96 may serve as a target for the treatment of IDD.
Read full abstract