The nonlinear mechanical dynamics of glycerinated insect fibrillar flight muscle are investigated. The most striking nonlinearity reported previously, which often resulted in oscillatory work being limited to frequencies below those of natural flight, disappears if 5 mM or more orthophosphate is added to the experimental solutions. We show that two further asymmetric nonlinearities, which remain even though phosphate is present, are predicted by cross-bridge theory if one takes account of the expected distortion of attached cross-bridges as filament sliding becomes appreciable. Adenosine triphosphate and adenosine diphosphate have opponent effects upon the mechanical rate constants, suggesting a scheme for the sequential ordering of the events comprising the cross-bridge cycle.
Read full abstract