Sandy soils are a type of geomaterial that may require improvements due to lack of cohesion. In this study, first, the lack of cohesion of sand was resolved using clay, and the soil was stabilized with cement and lime (4% and 3% of the dry weight of materials, respectively) and finally reinforced with recycled tire fibers of 20 to 30 mm in length for improved strength and ductility. Next, 747 samples with different fiber contents at different curing temperatures and ages were prepared and a unconfined compressive strength (UCS) test was carried out. Next, a novel approach employing multivariate nonlinear regression techniques and obtained empirical data was applied to formulate a mathematical model for predicting the UCS and the modulus of elasticity (Es) of the reinforced and stabilized soil. This model can serve as a valuable tool for building engineers in designing building foundations. The comparison of the obtained UCS and Es results and those predicted using the proposed model showed a correlation of >95% (R2 ≥ 0.95). The fibers effectively increased the failure strain, thus resulting in the greater ductility of the samples. As an example, in 14-day samples cured at 60 °C with 0%, 0.4%, 1%, 1.7%, and 2.5% fibers, the failure strain showed an incremental trend of 1.47%, 1.87%, 2.08%, 2.20%, and 2.92%, respectively. Scanning electron microscopy (SEM) was used to study the microstructure of the samples and to explain the strength experimental outcomes. SEM images showed a desirable interaction between the fiber surfaces with the soil mass and the reduction in porosity and the occurrence of pozzolanic reactions through stabilization. The results also showed that the reinforcement effectively improved the ductility, as desired for building foundations; however, it resulted in reduced strength, although a greater strength compared to the untreated soil was achieved. Although soil stabilization has been widely studied, limited research focuses on stabilizing soil with clay, lime, cement, and recycled tire fibers. This study offers design engineers an estimation scheme of the strength properties of stabilized and reinforced foundations.
Read full abstract