BackgroundN6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA, but there were few studies on its role in cancer drug sensitivity and resistance. Anlotinib has been proved to have effective antitumor effects in oral squamous cell carcinoma (OSCC) in our previous study. Here, we sought to investigate the treatment target of anlotinib and the function and mechanisms of m6A modification in regulating anlotinib effect in OSCC.MethodsAnlotinib treatment in a dose-dependent manner, western blotting, qRT-PCR and cell lost-of-function assays were used to study the treatment target of anlotinib in OSCC. RNA m6A dot blot assays, the m6A MeRIP-seq and MeRIP-qPCR, RNA and protein stability assays were used to explore the m6A modification of the treatment target of anlotinib. Cell lost-of-function assays after METTL3 depletion were conducted to investigate the effect of m6A modification level on the therapeutic effect of anlotinib in OSCC. Patient-derived tumor xenograft (PDX) models and immunohistochemistry staining were performed to study the relationship of METTL3 and antitumor sensitivity of anlotinib in vivo.ResultsAnlotinib targeted FGFR3 in the treatment of OSCC and inhibited tumor cell proliferation and promoted apoptosis by inactivating the FGFR3/AKT/mTOR signaling pathway. METTL3 was identified to target and modify FGFR3 m6A methylation and then decrease the stability of mRNA. METTL3 expression level was related to the anlotinib sensitivity in OSCC cells in vitro and METTL3 knockdown promoted anlotinib sensitivity of OSCC cells by inhibiting the FGFR3 expression. PDX models samples furthermore showed that METTL3 and FGFR3 levels were tightly correlated with the anlotinib efficacy in OSCC.ConclusionsIn summary, our work revealed that FGFR3 was served as the treatment target of anlotinib and METTL3-mediated FGFR3 m6A modification played a critical function in the anlotinib sensitivity in OSCC.