Theoretical treatments of nonequilibrium dynamics in strongly interacting Bose-Fermi mixtures are complicated by the inherent non-Gaussian nature of the vacuum two-body physics, invalidating the typical Hartree-Fock-Bogoliubov approximation. Here we apply the cumulant expansion to study nonequilibrium Bose-Fermi mixtures, which allows us to explicitly include the missing non-Gaussian quantum correlations, leading to a consistent dynamical theory of a Bose-Fermi mixture near an interspecies Feshbach resonance. We first apply our theory to a study of atom-pair coherence in the gas, which is significantly enhanced by the competing influences of the Fermi sea and Bose-Einstein condensation, in agreement with analytical calculations. Then we study the depletion of a degenerate Bose-Fermi mixture following a quench to the unitary regime, characterizing the resulting depletion of the Bose-Einstein condensate, the deformation of the Fermi surface, and the production of molecules. We find that at early times, the population dynamics scale quadratically with the hold time, and define an associated characteristic timescale set by the parameters of the mixture and the width of the Feshbach resonance. Published by the American Physical Society 2024
Read full abstract