Abstract
Motivated by recent surprising experimental findings, we develop a strong-coupling theory for Bose-Fermi mixtures capable of treating resonant interspecies interactions while satisfying the compressibility sum rule. We show that the mixture can be stable at large interaction strengths close to resonance, in agreement with the experiment, but at odds with the widely used perturbation theory. We also calculate the sound velocity of the Bose gas in the ^{133}Cs-^{6}Li mixture, again finding good agreement with the experimental observations both at weak and strong interactions. A central ingredient of our theory is the generalization of a fermion mediated interaction to strong Bose-Fermi scatterings and to finite frequencies. This further leads to a predicted hybridization of the sound modes of the Bose and Fermi gases, which can be directly observed using Bragg spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.