Solid-state fermentation is a useful tool for utilizing different plant-based materials as cultivation substrates in order to produce potentially high-value fermented bioproducts. The aim of the present study was to successfully prepare various types of such bioproducts, using a zygomycetous strain Umbelopsis isabellina CCF2412. Various legume and cereal substrates were utilized effectively, while a few of them were obtained from agricultural waste, which is particularly advantageous from ecological and economic point of view. A common feature of the produced fermented materials was the increased content of different polyunsaturated fatty acids and carotenoid pigments in these bioproducts. Subsequent to the optimization of the solid-state fermentation process using cornmeal as the cultivation substrate, bioproducts enriched with γ-linolenic acid (11.45 mg γ-linolenic acid per gram of bioproduct), β-carotene (50.90 μg β-carotene per gram of bioproduct), and various microbial sterols were obtained. Appropriate n–6/n–3 acid ratio and enrichment of other microbial substances, such as the pigments and sterols mentioned above, in the fermented bioproducts widens the applicability of these bioproducts in different industries. The fermented cereal bioproducts produced in the present study from fermented wheat bran substrate were used for evaluating their application as feed for broiler chicken, and satisfactory results were obtained. Therefore, the present study creates novel opportunities for improving the quality of fermented bioproducts obtained during solid-state fermentation processes, especially for application in the feed industry.