Automatic segmentation of skin lesions is a pivotal task in computer-aided diagnosis, playing a crucial role in the early detection and treatment of skin cancer. Despite the existence of numerous deep learning-based segmentation methods, the extraction of lesion features remains inadequate as a result of the segmentation process. Consequently, skin lesion image segmentation continues to face challenges regarding missing detailed information and inaccurate segmentation of the lesion region. In this paper, we propose a ghost convolution adaptive fusion network for skin lesion segmentation. First, the neural network incorporates a ghost module instead of the ordinary convolution layer, generating a rich skin lesion feature map for comprehensive target feature extraction. Subsequently, the network employs an adaptive fusion module and bilateral attention module to connect the encoding and decoding layers, facilitating the integration of shallow and deep network information. Moreover, multi-level output patterns are used for pixel prediction. Layer feature fusion effectively combines output features of different scales, thus improving image segmentation accuracy. The proposed network was extensively evaluated on three publicly available datasets: ISIC2016, ISIC2017, and ISIC2018. The experimental results demonstrated accuracies of 96.42%, 94.07%, and 95.03%, and kappa coefficients of 90.41%, 81.08%, and 86.96%, respectively. The overall performance of our network surpassed that of existing networks. Simulation experiments further revealed that the ghost convolution adaptive fusion network exhibited superior segmentation results for skin lesion images, offering new possibilities for the diagnosis of skin diseases.
Read full abstract