Abstract

The conservation of avian diversity plays a critical role in maintaining ecological balance and ecosystem function, as well as having a profound impact on human survival and livelihood. With species' continuous and rapid decline, information and intelligent technology have provided innovative knowledge about how functional biological diversity interacts with environmental changes. Especially in complex natural scenes, identifying bird species with a real-time and accurate pattern is vital to protect the ecological environment and maintain biodiversity changes. Aiming at the fine-grained problem in bird image recognition, this paper proposes a fine-grained detection neural network based on optimizing the YOLOV5 structure via a graph pyramid attention convolution operation. Firstly, the Cross Stage Partial (CSP) structure is introduced to a brand-new backbone classification network (GPA-Net) for significantly reducing the whole model's parameters. Then, the graph pyramid structure is applied to learn the bird image features of different scales, which enhances the fine-grained learning ability and embeds high-order features to reduce parameters. Thirdly, YOLOV5 with the soft non-maximum suppression (NMS) strategy is adopted to design the detector composition, improving the detection capability for small targets. Detailed experiments demonstrated that the proposed model achieves better or equivalent accuracy results, over-performing current advanced models in bird species identification, and is more stable and suitable for practical applications in biodiversity conservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call