The core strategy for constructing ultra-high-performance hybrid supercapacitors is the design of reasonable and effective electrode materials. Herein, a facile solvothermal-calcination strategy is developed to deposit the phosphate-functionalized Fe2O3 (P-Fe2O3) nanosheets on the reduced graphene oxide (rGO) framework. Benefiting from the superior conductivity of rGO and the high conductivity and fast charge storage dynamics of phosphate ions, the synthesized P-Fe2O3/rGO anode exhibits remarkable electrochemical performance with a high capacitance of 586.6Fg-1 at 1Ag-1 and only 4.0% capacitance loss within 10000 cycles. In addition, the FeMoO4/Fe2O3/rGO nanosheets are fabricated by utilizing Fe2O3/rGO as the precursor. The introduction of molybdates successfully constructs open ion channels between rGO layers and provides abundant active sites, enabling the excellent electrochemical features of FeMoO4/Fe2O3/rGO cathode with a splendid capacity of 475.4C g-1 at 1Ag-1. By matching P-Fe2O3/rGO with FeMoO4/Fe2O3/rGO, the constructed hybrid supercapacitor presents an admirable energy density of 82.0Whkg-1 and an extremely long working life of 95.0% after 20000 cycles. Furthermore, the continuous operation of the red light-emitting diode for up to 30min demonstrates the excellent energy storage properties of FeMoO4/Fe2O3/rGO//P-Fe2O3/rGO, which provides multiple possibilities for the follow-up energy storage applications of the iron-based composites.