The oxygen solutions in Fe-Ni melts containing chromium, manganese, vanadium, carbon, silicon, titanium, or aluminum are studied thermodynamically. The equilibrium constants of the deoxidation of the melts by these elements are determined, and the activity coefficients for infinite dilution and the interaction parameters in alloys of various compositions are found. The oxygen solubilities in the alloys are calculated as a function of the nickel and deoxidizer contents. The deoxidizer contents at the minima in the oxygen solubility curves for the melts are determined, and the corresponding minimum oxygen concentrations are calculated. As the nickel content in the system increases, the deoxidizing capacities of chromium, manganese, and silicon are shown to increase substantially, and the deoxidizing capacity of carbon increases most strongly. As the nickel content in the melt increases, the deoxidizing capacities of vanadium and titanium first decrease insignificantly and then increase substantially. As the nickel content in the melt increases to 50%, the deoxidizing capacity of aluminum first decreases and then increases; in pure nickel, it is identical to that in pure iron.
Read full abstract