Potential faults are common sensitive geological bodies that affect the safe mining of underground mines, often leading to major accidents such as rock instability and rockburst during mining. The failure mechanism of faults has been widely studied. However, due to the spatiotemporal specificity of fault occurrence, there are few theoretical and mathematical methods suitable for effective analysis in mine safety risk management. This study aims to introduce fractal theory to characterize the spatiotemporal activity fractal characteristics of induced faults intersecting the mining site and roadway during the mining process of the Ashele copper mine in China. Using microseismic systems and fractal theory, a spatiotemporal fractal model of the fault slip process is constructed, and a fractal analysis method is proposed. The fractal dimension value is calculated based on the spatiotemporal parameters of different segments and stages. The fractal dimension is used to characterize and analyze the evolution of the fault. The physical formation process of potential faults and the relationship between fractal dimension values and multiple parameters, including spatial clustering, regional distribution characteristics, and energy-release characteristics, were analyzed based on the division of events into different time stages. Discovering fractal dimension’s temporal and spatial–temporal characteristics can provide technical references for mine disaster prevention.
Read full abstract