AbstractSynchrotron White Beam X-ray Topography studies are presented of dislocation behavior and interactions in a new generation of one hundred millimeter diameter, 4H-SiC wafers grown using Physical Vapor Transport (PVT) under specially designed low stress conditions. Such low stress growth conditions have, for example enabled reductions of basal plane dislocation (BPD) densities by two or three orders of magnitude compared to previous levels down to just a few hundred per square centimeter. This provides a unique opportunity to discern details of dislocation behavior which were previously precluded due to complications of image overlap at higher densities. Among the phenomena observed in these studies is the deflection of threading dislocations onto the basal plane producing various stacking fault configurations. Analysis of the contrast from these faults enables determination of their fault vectors which, in turn, provides insight into their possible formation mechanisms.
Read full abstract