Nanostructured hybrid material of exfoliated graphite nanosheets and carbon nanotubes (GNSNT) served as supercapacitor electrode materials was presented. The nanostructured hybrid was prepared by a facile chemical reduction method. The hybrid material was characterized by X-ray diffraction technique, transmission electron microscopy, scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge cycling, and four-point probe conductivity measurement to represent a well-defined nanostructure possessing a vast number of active sites and delivering the ingredients for a fast effective charge separation network. Our results clearly demonstrated that the hybrid possess a superior performance. A specific capacitance value 266 F/g was obtained for GNSNT hybrid electrode at a current density of 0.1 A/g, while it was only 185 F/g for exfoliated graphite nanosheets (GNS). At a higher current density of 2 A/g, the GNSNT electrode still keeps a specific capacitance of 220 F/g, which is more than double that of GNS. This synergistic effect of the nanostructured hybrid material offers an effective network for charge separation and therefore renders a significantly enhanced specific capacitance and rate capability.