Abstract
Photoinduced electron-transfer processes of the newly synthesized rodlike covalent donor−acceptor molecules consisting of electron-donating ferrocenes (Fc) with electron-accepting perylenediimides (PDIs) with core-substituted cyano and pyrrolidine groups, forming Fc-PDI(CN)2 dyad, Fc2-PDI(CN)2 triad, and Fc-PDI(Py)2 dyad, have been investigated in benzonitrile. The geometric and electronic structures of the dyads and triad were probed by ab initio B3LYP/6-311G methods. The distribution of the highest occupied molecular orbitals (HOMOs) was on the ferrocene entities, while the distribution of the lowest unoccupied molecular orbitals (LUMOs) was on the PDI entities. Free-energy calculations verify that the light-induced processes from excited states of PDIs are exothermic. The excited state photochemical events are monitored by femtosecond and nanosecond transient absorption techniques. In benzonitrile, the quenching pathway involves fast and efficient charge separation from the ferrocenes to the excited PD...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.