Abstract

Molecular packing structures and photoinduced charge separation dynamics have been investigated in a recently developed bulk heterojunction (BHJ) organic photovoltaic (OPV) material based on poly(thienothiophene-benzodithiophene) (PTB1) with a power conversion efficiency (PCE) of >5% in solar cell devices. Grazing incidence X-ray scattering (GIXS) measurements of the PTB1:PCBM ([6,6]-phenyl-C(61)-butyric acid methyl ester) films revealed pi-stacked polymer backbone planes oriented parallel to the substrate surface, in contrast to the pi-stacked polymer backbone planes oriented perpendicular to the substrate surface in regioregular P3HT [poly(3-hexylthiophene)]:PCBM films. A approximately 1.7 times higher charge mobility in the PTB1:PCBM film relative to that in P3HT:PCBM films is attributed to this difference in stacking orientation. The photoinduced charge separation (CS) rate in the pristine PTB1:PCBM film is more than twice as fast as that in the annealed P3HT:PCBM film. The combination of a small optical gap, fast CS rate, and high carrier mobility in the PTB1:PCBM film contributes to its relatively high PCE in the solar cells. Contrary to P3HT:PCBM solar cells, annealing PTB1:PCBM films reduced the device PCE from 5.24% in the pristine film to 1.92% due to reduced interfacial area between the electron donor and the acceptor. Consequently, quantum yields of exciton generation and charge separation in the annealed film are significantly reduced compared to those in the pristine film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.