Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole-thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, HRMS and FTIR. The results of the optical property study indicate that little influence could be observed in the presence of the phenoxazine chromophore. Corresponding polymer films on the surface of an ITO/glass electrode were obtained through electropolymerization. The electrochemical features displayed were various due to the introduction of the phenoxazine group. The spectroelectrochemical results demonstrate that the color of the polymer films could be changed. Compared with the PDDC films, the PDDCP films exhibited three different colors (tangerine, green and purple colors) in different redox states, which could be attributed to the synergistic effect between the carbazole-thiophene conjugate chain and the phenoxazine group. Moreover, fast switching time could be seen due to the presence of the phenoxazine chromophore. This study could provide a reference for obtaining high-performance electrochromic materials.
Read full abstract