Abstract

Electrochromic polymers (ECPs) have great application potential in flexible displays, and there is an increasing expectation of using green methods to form ECP films. Herein, we propose a modified microemulsion method to prepare cyan/magenta/yellow (C/M/Y) water-dispersed electrochromic polymer nanoparticles (WDEN) systems. Three polymer films (WDECP-C/M/Y) maintain similar electrochemical properties compared to their corresponding organic solvent-based polymer films. It is intriguing that WDECP-C/M/Y exhibit better electrochromic properties in terms of higher cycling stability (97.24%, 95.05%, and 52.84%, respectively) and faster switching time (0.94 s, 1.09 s, and 1.34 s for coloring time, respectively) due to the introduction of nanoparticles. In addition, it can achieve various desired colors by blending the C/M/Y WDEN systems in different ratios. The calculated chromaticity coordinates of the blending polymer films show close values to the experimental observation, and the calculated ΔE * ab values range from 2.6 to 10.3, which may provide theoretical guidance for precisely color control. Finally, large-scale and patterned devices were assembled, which can achieve colored-to-colorless reversible electrochromism at a low driving voltage of 0–1.5 V. This work puts forward a universal and environmentally sustainable strategy to prepare WDEN systems, demonstrating their wide range of applications in display devices and electronic tags.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call