Conducting Visual Display Terminal (VDT) visual search tasks under time constraint has broad applications in fields such as security checks, medical diagnostics, and rescue operations. While excessive time pressure can impair performance, moderate time pressure can motivate individuals to complete tasks and increase productivity. Investigating the positive impact of time pressure on visual search tasks has become a crucial area of study. Clock timing plays a vital role in the visual interface, influencing the perception of time pressure and impacting visual search performance. However, existing research has paid little attention to the induction of time pressure and the impact of clock timing in VDT visual interfaces on visual search performance. Hence, the objective of this study is to investigate the impact of clock timing on VDT visual search performance under time constraint. The content of the experimental tasks was determined through a pilot experiment. The formal experiment was conducted in two phases over six sessions. Participants were tasked with locating the letter "E" embedded within the distractor letter "F," displayed with a clock area above the interface. The first phase of experiments included conditions of no clock, 4-min clock timing, and 4-min countdown clock timing. In the second phase of the experiment, the clock display method was a countdown clock, with three experiments conducted featuring long time, medium time, and short time. Search speed and accuracy were used as primary performance evaluation metrics to examine the impact of clock timing methods and duration on visual search performance. Twenty-one undergraduate students participated in the formal experiment. In the first phase of experiments, participants demonstrated significantly faster reaction times (RTs) in tasks where a clock display was present compared to tasks without (ANOVA, F(2, 60) = 4.588, P = 0.014). However, there were no significant differences in accuracy rates across different timing conditions (ANOVA, F(2, 60) = 0.146, P = 0.865), and no significant correlation between RTs and accuracy was found (Kendall's R = 0.11, P = 0.914). During the second phase, RTs decreased significantly as time constraints became more stringent (ANOVA, F(2, 60) = 7.564, P < 0.05). Conversely, accuracy rates decreased significantly under shorter time constraints (ANOVA, F(2, 60) = 4.315, P < 0.05), with a negative correlation observed between RTs and accuracy (Kendall's R = 0.220, P < 0.01). Compared to conditions without clock displays, having clock displays significantly improved the speed of the visual search task, although the difference in accuracy was not statistically significant. In the context of shorter clock countdown limits, Shorter timing constraints resulted in faster search speeds but also led to reduced accuracy and increased fatigue. Overall, a correlation exists between search speed and accuracy in visual tasks, where higher speed often correlates with lower accuracy. These findings provide valuable insights into clock timing design for visual search interfaces under time pressure.