In this study, three efficient algorithms are proposed for fast phase retrieval in slightly off-axis digital holography using spectrum cropping, spatial multiplexing, and complex encoding. In the first algorithm, the real spectral order of the subtracted hologram is filtered and cropped, and the number of pixels is decreased in the subsequent retrieval operations. In the second algorithm, two sequential subtracted holograms are digitally phase shifted and spatial multiplexed into one synthetic hologram, and thus only one inverse Fourier transformation is then required. In the third algorithm, two sequential subtracted holograms are encoded separately into the real part and the imaginary part of a complex hologram. Two cross-correlations can be used to reconstruct the phase, thereby improving the utilization of the spectrum. The three new algorithms speed up our previously proposed retrieval method with the assistance of specimen-free holograms. Our experiments demonstrated the validity and improved time requirements of the proposed methods.
Read full abstract