Abstract

We report on a novel algorithm for high-resolution quantitative phase imaging in a new concept of lensless holographic microscope based on single-shot multi-wavelength illumination. This new microscope layout, reported by Noom et al. along the past year and named by us as MISHELF (initials incoming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy, rises from the simultaneous illumination and recording of multiple diffraction patterns in the Fresnel domain. In combination with a novel and fast iterative phase retrieval algorithm, MISHELF microscopy is capable of high-resolution (micron range) phase-retrieved (twin image elimination) biological imaging of dynamic events. In this contribution, MISHELF microscopy is demonstrated through qualitative concept description, algorithm implementation, and experimental validation using both a synthetic object (resolution test target) and a biological sample (swine sperm sample) for the case of three (RGB) illumination wavelengths. The proposed method becomes in an alternative instrument improving the capabilities of existing lensless microscopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.