Today’s intermittent computing systems operate by relying only on harvested energy accumulated in their tiny energy reservoirs, typically capacitors. An intermittent device dies due to a power failure when there is no energy in its capacitor and boots again when the harvested energy is sufficient to power its hardware components. Power failures prevent the forward progress of computation due to the frequent loss of computational state. To remedy this problem, intermittent computing systems comprise built-in fast non-volatile memories with high write endurance to store information that persists despite frequent power failures. However, the lack of design tools makes fast-prototyping these systems difficult. Even though FPGAs are common platforms for fast prototyping and behavioral verification of continuously powered architectures, they do not target prototyping intermittent computing systems. This article introduces a new FPGA-based framework, named NORM ( N on-volatile mem OR y e M ulator), to emulate and verify the behavior of any intermittent computing system that exploits fast non-volatile memories. Our evaluation showed that NORM can be used to emulate and validate FeRAM-based transiently powered hardware architectures successfully.
Read full abstract