Manipulating the way a droplet shrinks by evaporation or dissolution is an effective approach for assembling dissolved nanomaterials. In this work, we investigate the dissolution dynamics of a submicroliter sessile droplet of electrolyte aqueous solution and of graphene oxide suspension immersed in a binary mixture of solvents, among which one is miscible and the other is immiscible with water (i.e., an Ouzo system). Our measurements reveal an interesting two-stage dissolution of the droplet: a fast initial stage and a slow second stage. The duration of the first stage is longer at a lower temperature, leading to a counterintuitive result that the dissolution completes faster at reduced temperature. The presence of graphene oxide in the droplet dramatically alters the dissolution dynamics, possibly due to its enrichment at the droplet surface. The finding from this work provides useful guideline for designing conditions to pack nanomaterials by dissolving droplets, especially for those temperature sensitive components.