ABSTRACT In order to improve the recognition rate and operational efficiency of the system, a method in which the image features compensation coefficients are optimized by using an improved simulated annealing algorithm is proposed. Firstly, eight computational factors with low computational complexity are given, which can be used to compensate image features. Secondly, the design flow of face recognition algorithm is presented. Thirdly, an improved simulated annealing algorithm is designed to solve the optimal combination of feature compensation coefficients in the face recognition system. Fourthly, the results of the feature compensation coefficients recommended by the improved simulated annealing algorithm are applied to the Efficient Face Recognition Algorithm (EFRA) in this paper, and verified on the simulation platform. Experiments show that the recognition rate can reach 100% when the training images are 6 in ORL. The proposed algorithm also performs well in MU_PIE dataset.
Read full abstract