Abstract

Selection and implementation of a face descriptor that is both discriminative and computationally efficient is crucial. Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) have been proven effective for face recognition. LBPs are fast to compute and are easy to extract the texture features. OC-LBP descriptors have been proposed to reduce the dimensionality of LBP while increasing the discrimination power. HOG features capture the edge features that are invariant to rotation and light. Owing to the fact that both texture and edge information is important for face representation, this article proposes a framework to combine OC-LBP and HOG. First, OC-LBP and HOG features are extracted, normalized and fused together. Next, classification is achieved using a histogram-based chi-square, square-chord and extended-canberra metrics and SVM with a normalized chi-square kernel. Experiments on three benchmark databases: ORL, Yale and FERET show that the proposed method is fast to compute and outperforms other similar state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.